
Study and evaluation of the TranFuzz method for generating and
using black-box adversarial samples

Mars 2025

Thimoté Dupuch
thimote.dupuch@etu.emse.fr

Noé Backert
noe.backert@etu.emse.fr

Timothée Cloup-Martin
timothee.cloup@etu.emse.fr

Mounia Kharbouche-Harrari
mounia.kharbouche-harrari@st.com

Julien Montmasson
julien.montmasson@st.com

Abstract The use of artificial neural networks presents numerous security challenges and
issues, such as robustness against attacks through the generation of adversarial examples. For
a classifier-type model, white-box attacks exploit knowledge of the internal architecture of a
deep neural network and the data on which it was trained to generate images likely to deceive
the classification system. This type of attack, although easy to implement and very powerful,
is not realistic for a computer system because it is often impossible to know the model’s
architecture or the initial training data. Black-box attacks aim to design adversarial examples
without assuming any particular knowledge of the model beforehand. TranFuzz is a system
that enables the creation of a model capable of generating adversarial examples while adhering
to the conditions of a black-box attack. In this work, we provide a review and study of the
performance of the TranFuzz system.

Contents
I] Introduction . 2
II] State of the Art . 2

II.1] White-Box Attacks . 2
II.2] Black-Box Attacks . 3
II.3] Defenses Against Adversarial Attacks . 4

III] TranFuzz system . 4
III.1] DSAN . 4
III.2] Fuzzer . 5

IV] Evaluation methodology . 6
IV.1] Adversarial retraining . 7

V] Experiences and protocols . 8
VI] Results . 9

VI.1] Process . 9
VI.2] Transferability results . 10
VI.3] Attack results . 11
VI.4] Limitations . 13

VII] Conclusion . 13
VIII] Bibliography . 14
IX] Appendix . 15

I] Introduction
In recent years, neural networks have become integral to various applications, from image
recognition and natural language processing to autonomous vehicles and healthcare diagnostics.
However, their widespread adoption has also exposed them to potential security threats known
as adversarial attacks. These attacks involve subtle manipulations of input data designed to
deceive the neural network into making incorrect predictions or decisions. For instance, slight
alterations to an image, imperceptible to the human eye, can cause a neural network to
misclassify objects, leading to significant errors in critical systems. The importance of addressing
these vulnerabilities can’t be overstated. In domains such as autonomous driving, adversarial
attacks could lead to catastrophic failures, endangering human lives. Similarly, in healthcare,
misdiagnoses due to adversarial inputs could have severe consequences for patient treatment.
Furthermore, as neural networks are increasingly deployed in sensitive areas like finance and
cybersecurity, their susceptibility to attacks poses substantial risks to data integrity and privacy.
Therefore, understanding and mitigating adversarial attacks is crucial for ensuring the reliability
and safety of neural network-based systems in real-world applications.

The entire body of work on the TranFuzz system is presented in the paper [1]. It provides a
framework to train, test and use a new type of adversarial attack, that can also be used to
improve the robustness of base models via adversarial retraining.

II] State of the Art
II.1] White-Box Attacks
White-box attacks assume that the attacker has full knowledge of the target model, including
its architecture, parameters, and training data. This level of access allows for highly effective
and precise attacks. Some of the most notable white-box attack methods include:

2/17

Fast Gradient Sign Method (FGSM): Introduced by Goodfellow et al. (2014) [2], FGSM
generates adversarial examples by disturbing the input in the direction of the gradient of the
loss function with respect to the input. This method is computationally efficient and can be
implemented with a single gradient computation.

Basic Iterative Method (BIM): An extension of FGSM, BIM applies smaller perturbations
iteratively, making it more effective in generating adversarial examples that are closer to the
original input.

Jacobian-based Saliency Map Attack (JSMA): This method uses the Jacobian matrix to
identify the most influential pixels in the input and perturb them to maximize the likelihood
of misclassification.

DeepFool: Introduced by Moosavi-Dezfooli et al. (2016) [3], DeepFool is an iterative method
that aims to find the minimal perturbation required to change the classification of an input. It
is particularly effective in generating adversarial examples that are visually indistinguishable
from the original input.

Projected Gradient Descent (PGD): Introduced in 2019 [4], this attack generates adver-
sarial examples by iteratively refining perturbations to maximize a model’s classification error.

Carlini & Wagner (C&W) Attack: This method, proposed by Carlini and Wagner (2017)
[5], formulates the generation of adversarial examples as an optimization problem. It is highly
effective in generating adversarial examples with minimal perturbations and has been shown to
be effective against various robust models.

II.2] Black-Box Attacks
Black-box attacks, on the other hand, assume that the attacker has limited or no knowledge of
the target model’s internal workings. These attacks are more challenging to execute but are also
more realistic in many practical scenarios. Some prominent black-box attack methods include:

Spatial Tranformation (ST): Introduced in 2018 [6], this attacks uses a different type of
perturbation : the spatial transformation, that is able to generate perceptually realistic and
more difficult to defend against images.

Zeroth Order Optimization (ZOO): Proposed by Chen et al. (2017) [7], ZOO uses zeroth-
order optimization techniques to estimate the gradients of the target model. It can generate
adversarial examples with limited queries to the model.

One-Pixel Attack: This method, introduced by Su et al. (2019) [8], demonstrates that
changing a single pixel in an image can be sufficient to fool a classifier. It uses differential
evolution to find the optimal pixel to perturb.

Boundary Attack: Proposed by Brendel et al. (2018) [9], the boundary attack starts with
a large perturbation and iteratively reduces it while maintaining the adversarial nature of the
example. It does not require gradient information and is effective against various models.

Transfer-Based Attacks: These attacks leverage the transferability of adversarial examples
across different models. An adversarial example generated for one model can often fool another
model with a similar architecture or training data. This property allows attackers to generate
adversarial examples using a surrogate model and apply them to the target model.

3/17

Query-Efficient Black-Box Attacks: Methods like the Simple Black-Box Attack (SimBA)
by Guo et al. (2019) [10] aim to minimize the number of queries to the target model. SimBA
uses random perturbations and queries the model to iteratively refine the adversarial example.

II.3] Defenses Against Adversarial Attacks
In response to these attacks, various defense mechanisms have been proposed. Some notable
defenses include:

Adversarial Training: This method involves training the model on both clean and adversarial
examples to improve its robustness. It has been shown to be effective against various attacks
but can be computationally expensive.

Defensive Distillation: Defensive distillation involves training the model to produce soft
labels and then using these labels to train a second model. This process can make the model
more robust against adversarial examples.

Gradient Masking: This technique aims to hide the gradient information from the attacker,
making it more difficult to generate adversarial examples. However, it has been shown to be
vulnerable to attacks that doesn’t use any gradient method such as Carlini & Wagner’s attack.

Input Transformation: Methods like JPEG compression, random resizing, and padding can
be used to transform the input and reduce the effectiveness of adversarial perturbations.

III] TranFuzz system
TranFuzz is an advanced framework designed to generate highly transferable adversarial
examples. It operates through two key components:

• Domain Adaptation with Deep Subdomain Adaptation Network (DSAN)

TranFuzz leverages DSAN to align the source and target data distributions. This process enables
the creation of a local substitute model that closely mimics the target model’s behavior, even
without direct access to the target data.

• Adversarial Example Generation via Fuzzing Techniques

By utilizing neuron coverage metrics, TranFuzz identifies model vulnerabilities and applies
targeted mutations to maximize attack transferability. Additionally, it introduces a novel
ensemble-based seed mutation strategy, enhancing the diversity and effectiveness of generated
adversarial samples.

III.1] DSAN
The Deep Subdomain Adaptation Network (DSAN), as proposed by [11] Zhu et al. (2020),
addresses domain adaptation challenges by reducing the distribution gap between source and
target data domains. In TranFuzz, DSAN plays a crucial role in building a local substitute
model that learns to replicate the target model’s behavior.

The objective of the DSAN methodology is to train a local model capable of generalizing to
the target model’s decision boundaries. DSAN employs an adaptive loss function composed of
two parts:

• Classification loss (cross-entropy), ensuring the model learns accurate decision boundaries
on available data.

4/17

• Local Maximum Mean Discrepancy (LMMD) loss, which minimizes distributional
discrepancies between source and target data across different feature levels.

This combination makes the local model more representative of the target model and signifi-
cantly enhances the transferability of adversarial examples.

An effective adversarial example is one that triggers new neuron activations that regular inputs
do not, pushing the model into less explored and more vulnerable states.

On the other hand, TranFuzz uses two key objective functions to guide adversarial generation:
• Misclassification Objective :

obj1TF : 𝑓(𝑥adv) ≠ true label of xadv

The adversarial example is successful if the local substitute model misclassifies it.

• Similarity Preservation Objective

Here, Average Structural Similarity (ASS) ensures the adversarial input remains visually
indistinguishable from the original input. A high similarity threshold (set to 0.96) ensures
imperceptibility to human observers.

A generated adversarial example must satisfy both conditions — it must induce misclassification
while remaining visually close to the original input.

In the code provided by the research document, the model used for the DSAN is a ResNet,
which remains widely used today. The DSAN.py code calls the source dataset as well as the target
model’s test dataset to evaluate adaptation. The target model’s training dataset is also used,
but only its size is retrieved in order to train the ResNet with exactly the same number of
images from the source dataset. Thus, it can be clearly observed that the model generalizes
properly.

III.2] Fuzzer
The fuzzing module in TranFuzz is inspired by software fuzz testing, but applied to neural
networks. It explores the unusual behavioral spaces of the local substitute model to produce
adversarial examples that not only fool this model but are also likely to succeed against the
target model.

Core Components of the Fuzzing Process:

• Neuron Coverage (NC): Guides the selection of inputs and mutations by focusing on
maximizing neuron activation diversity, with DeepXplore being used to achieve this goal.
In CoverageUpdate.py, each neuron is checked by taking the average of its activations. If its
value exceeds the threshold, it is marked as “covered.”

if torch.mean(scaled[..., num_neuron]) > threshold and not model_layer_dict[(list(layer_names.keys())
[idx], num_neuron)]:
 model_layer_dict[(list(layer_names.keys())[idx], num_neuron)] = True

• Coverage Analyzer: Dynamically identifies neurons whose activation patterns are under-
explored and prioritizes them for mutation.

if not_covered:
 layer_name, index, v = random.choice(not_covered)

5/17

• Objective Functions: The two conditions outlined above (misclassification and similarity
preservation) define the success criteria for each adversarial sample.

condition_max_sim = torch.mean(dist).item() <0.995 * torch.mean(ssim(init_image, init_image)).item()
condition_min_sim = torch.mean(dist).item() < 0.9 * torch.mean(ssim(init_image, init_image)).item()

• Mutator: Applies various input transformations and perturbations to discover adversarial
variants with maximal transferability. In the mutators.py file, several mutations can be seen,
such as gradient modification, Gaussian blur, and salt-and-pepper noise.

gauss_noise = torch.tensor([gaussian_gradient_magnitude(grads, sigma=2)])
blur = cv2.GaussianBlur(img, (3, 3), 0)

The notable innovation introduced by TranFuzz is the ensemble-based seed mutation strategy,
which maximizes the difference between benign and adversarial examples by using a population-
based approach rather than relying on single-instance mutations. This seems to significantly
improve the diversity and success rate of adversarial attacks across different target models.

IV] Evaluation methodology
The methodology involves several key steps to evaluate the robustness of a target model
against adversarial examples generated by a Deep Subdomain Adaptation Network (DSAN).
The process is as follows:

1. Dataset Selection:
• Choose one of the two datasets: Office31 or OfficeHome (the latter being larger).

2. Target Model Training:
• Select a target model architecture from AlexNet, VGG19, or DenseNet121.
• Train the target model on one of the subsets of the chosen dataset. The subsets include:

‣ Office31/Amazon
‣ Office31/RealWorld
‣ OfficeHome/Product
‣ OfficeHome/Webcam

• Assume this subset is unknown for the attack.

3. Source Model Training with DSAN:
• Train a ResNet model using the DSAN method on the same dataset but using the

complementary subset. This subset is referred to as the source data, and the model trained
on it is the source model.

4. Local Inference and Training:
• Perform local inference on the target model using the source data.
• Use the inference results to further train the ResNet model.

5. Adversarial Example Generation:
• Once trained, the ResNet model generates adversarial examples on the test split of the

source data.

6. Evaluation:
• Test the misclassification rate of these adversarial examples on the target model to assess

its vulnerability.

6/17

By following these steps, the methodology aims to evaluate how well the target model can
withstand attacks from adversarial examples generated by a DSAN-trained ResNet model.

Unknown Training Dataset

Unknown Model Architecture

Target Model

Local Training Dataset

Local Model : Known Architecture
ResNet50

Source Model

Local inference on
target model

Local Test Dataset

Adversarial samples

Crafting samples
with ResNet50

Using the adversarial
samples on the target
model to fuzz the system

Figure 1: Overall fuzzing methodology diagram

IV.1] Adversarial retraining
To further enhance the robustness of the target model, the dataset can be augmented with the
previously generated adversarial examples. This augmented dataset is then used to train from
scratch the target model with the same number of epochs as the original non robust training.
By incorporating adversarial examples into the training process, the target model can better
learn to defend against such attacks, improving its overall resilience and accuracy in real-world
scenarios.

By following these steps, the methodology aims to evaluate how well the target model can
withstand attacks from adversarial examples generated by a DSAN (of ResNet architecture)
model and to improve its robustness through retraining.

7/17

Improved Final Model
Resilient to attacks

Augmented Training Dataset with
adversarial samples

Fully untrained, non robust model

TranFuzz system

Retraining phase

Figure 2: Adversarial retraining with augmented dataset

In order to perform other kind of attacks, and to setup defense strategies with the TranFuzz
system, we used Adversarial Robustness Toolbox (ART) [12] that provides a convenient way to
craft adversarial images. It also simplifies the implementation of defense strategies such as FBF
[13] and Madry’s Protocol [4]. However, we created our own implementation of the retraining
using TranFuzz, with a handmade dataset containing both base images and adversarial images.

V] Experiences and protocols
1. Baseline evaluation

• Train a target model on clean data.
• Evaluate and record the accuracy of the target model.
• Train a source model (ResNet) using DSAN on the target model and a same labelled dataset
• Evaluate the target model against known adversarial attacks (FGSM, PGD, C&W, Spatial

Transformations (ST))
• Generate fuzzed adversarial examples using the trained source model.
• Evaluate the adversarial examples generated from the source model on the target model.

2. Madry robust model evaluation

• Train a Madry robust target model (adversarial training based on the initial target model)
using the ART (Adversarial Robustness Toolbox) framework [12].

• Evaluate and record the accuracy of the Madry robust model.
• Train a new source model using DSAN, this time using the Madry robust model as the

target.
• Test the Madry robust model against the same known attacks (FGSM, PGD, C&W, ST).
• Generate fuzzed adversarial examples targeting the Madry robust model.
• Evaluate the Madry robust model against these newly generated fuzzed examples.

3. TranFuzz robust model evaluation

• Train a TranFuzz robust model by retraining the target model on fuzzed images generated
in the previous stage.

8/17

• Evaluate and record the accuracy of the TranFuzz robust model.
• Train a new source model using DSAN on the TranFuzz robust target model.
• Test the TranFuzz robust model against the same known attacks (FGSM, PGD, C&W, ST).
• Generate fuzzed adversarial examples targeting the TranFuzz robust model.
• Evaluate the TranFuzz robust model on these fuzzed samples.

VI] Results
VI.1] Process
In order to determine whether the system works better than other conventional attacks and
defense methods, we had to compare them step by step with TranFuzz.

To be able to follow our protocol, we developed an improvement¹ of the code given from the
article. [1].

We first trained a target model, measured its accuracy on the test dataset : the percentage of
correct label classification against all images on the test dataset.

We then performed FGSM, PGD, C&W and ST attacks on the test dataset of the target model
and measured each accuracy value. We also performed the TranFuzz attack to compare results.

We trained a first robust model that is using the Madry’s Protocol [4] to improve the target
model’s robustness and performed the attacks again.

Finally, we retrained from scratch (without any transfer learning) a model that is using a
dataset consisting of 90% of the source training dataset images, and 10% of adversarial images
previously generated with the TranFuzz system. We performed the attacks on this model as well.

This allows us to understand which attack works effectively on which model, and compare the
results with each dataset.

¹https://github.com/noebackert/PR-ICICS

9/17

https://github.com/noebackert/PR-ICICS

VI.2] Transferability results

Target Model Target Dataset Transfer Accuracy
(Accuracy on the source model)

Densenet
(non robust) Webcam 98.90% (90/91)

Densenet
(Madry retrained model) Webcam 98.90% (90/91)

Densenet
(TranFuzz retrained) Webcam 98.90% (90/91)

Densenet
(non robust) Amazon 76.79% (225/293)

Densenet
(Madry retrained model) Amazon 77.13% (226/293)

Densenet
(TranFuzz retrained) Amazon 79.52% (233/293)

Densenet
(non robust) Product 89.36% (420/470)

Densenet
(Madry retrained model) Product 91.06% (428/470)

Densenet
(TranFuzz retrained) Product 93.40% (439/470)

Table 1: Transfer accuracy of the target model DenseNet-121 on the source model using
different target datasets

First of all, we can see that the transfer accuracy is highly dependent on the dataset used and
its size. The Webcam dataset, which is comparatively small and less complex, achieves near-
perfect transfer accuracy (98.90%) across all three source models, showing that for simpler
domains, even non-robust models are sufficient for effective transfer.

In contrast, for more challenging datasets like Amazon and Product, we observe notable
performance gaps. On Amazon, the non-robust model achieves 76.79% accuracy, while adver-
sarially retrained models (both Madry and TranFuzz) improve performance incrementally, with
TranFuzz reaching 79.52%. This suggests that adversarial retraining, especially using methods
like TranFuzz that incorporate domain adaptation and fuzzing-based perturbation, provides
stronger generalization across domains with higher distribution shifts.

For the Product dataset, these improvements are even more significant: the non-robust model
reaches 89.36%, but the TranFuzz retrained model attains 93.40%. This large margin (+4.04%)
demonstrates that adversarial retraining does not just defend against attacks but also enhances
the model’s ability to generalize on challenging and more complex data distributions.

Another key observation is that even though Madry retraining provides improvements (e.g.,
from 89.36% to 91.06% on Product), TranFuzz outperforms it. This may be due to the ensemble
mutation strategy and domain adaptation mechanisms described in the paper, which seem to
address both black-box model and data distribution challenges simultaneously.

Finally, these results suggest that the benefit of adversarial retraining methods scales with
dataset complexity. For simple domains (Webcam), improvement ceilings are quickly reached,

10/17

while for more complex domains (Amazon and Product), these methods unlock substantial
performance gains.

VI.3] Attack results

Figure 3: DensetNet-121 result charts on different datasets

First of all, we can see that the TranFuzz attack is highly promising and demonstrates its ability
to effectively attack black-box models. For instance, on the DenseNet model, the accuracy drops
from 94.51% to 42.03% under a TranFuzz attack, highlighting the strength and efficiency of
this method in degrading model performance.

From the Figure 3, we can also observe a strong dependency on the chosen datasets. For example,
the Webcam dataset, which is the smallest with only 91 test images, exhibits extremely low
accuracy under the PGD attack. This might suggest that smaller datasets with less variance
could make models more vulnerable to gradient-based perturbations.

11/17

Figure 4: Office31/Webcam result charts for different model architectures

As a general observation across all models, PGD attacks consistently prove to be the most
effective (as confirmed in Figure 3), drastically reducing accuracy regardless of whether the
models are robust or non-robust. This reaffirms PGD’s position as one of the most powerful
gradient-based attack methods.

TranFuzz attacks are also highly competitive, often achieving results comparable to PGD and,
in some cases, even surpassing classical white-box attacks such as C&W or ST.

While FGSM remains weaker compared to PGD and TranFuzz, it still causes significant
degradation in accuracy, particularly on non-robust models, demonstrating that even simple
attacks can expose vulnerabilities in poorly defended architectures.

It’s important to note that these results can be interpreted in various ways, as they may depend
on the target model’s architecture, the complexity of the dataset, and the training process.

However, one consistent observation is that models retrained with TranFuzz-generated adver-
sarial images demonstrate some increased robustness to certain attacks — notably against
FGSM and, to some extent, TranFuzz attacks themselves. That said, this improvement is not
universal. In particular, attacks like C&W still manage to degrade accuracy from 5% to 20%
on these supposedly robust models, indicating that the defense provided by TranFuzz-based
retraining is partial and does not generalize well against all attack vectors.

This suggests that while TranFuzz is a powerful tool for generating adversarial examples and
can enhance resilience in certain scenarios, it does not yet provide a fully reliable defense.
In fact, its role as a defensive tool seems limited, especially when facing sophisticated white-
box attacks. It may still hold value as a complementary technique for robustness training, but
relying on it alone for defense is insufficient.

The results of our experiments suggest that we should prioritize the use of a model like PGD
to attack a known target model (white box), and choose TranFuzz rather than ST in the case

12/17

of an attack on an unknown target model (black box), as is generally the case in real-world
conditions.

VI.4] Limitations
The main limitation of our experiments comes from the datasets used, particularly their size.
With only 704 images, the Office-31 Webcam dataset is the smallest. Splitting the training and
validation data using a 90/10 ratio makes the accuracy highly volatile, making it difficult to
reproduce the results. Moreover, in an effort to make the study more accessible, the research
paper omitted some points that are nevertheless essential for reproducing the experiments.
Specifically, information about key parameters such as the learning rate or the optimizer was
not provided, forcing us to rely on the values already implemented in the code. We also limited
our research to a small set of attacks and defense strategies. We also largely limited our
study to rather old architectures of image classification models : AlexNet (2012), VGG (2014)
and DenseNet (2017), while the source model is a simple ResNet. We got some numbers to
confidently give a conclusion about the results from [1].

VII] Conclusion
Throughout this project, we used the open-source code for the TranFuzz system, which provides
a way to perform black-box adversarial attacks. We were able to effectively reproduce the results
from the original paper [1], with some slight variations in some configurations. Since these
variations resulted in performance that was sometimes slightly better and sometimes slightly
worse, we believe it is unlikely the original results were hand-picked to be good. The variations
can be due to a lot of potential reasons : improvements in the code after the initial release of
the paper, changes in the system seeds for the pseudo-random number generation (especially
for the stochastic processes happening for the deep learning algorithms).

Numerous avenues exist for future exploration. Firstly, expanding the scope of our analysis to
encompass a more comprehensive range of adversarial attacks and defense mechanisms is crucial.
Secondly, evaluating the robustness of domain adaptation techniques across a wider variety of
datasets beyond Office31 and OfficeHome would provide a more generalizable understanding
of their effectiveness. Also, the dataset splits were done only once using a random algorithm
with a fixed seed. This results in a reproducible work but that is far from exhaustive, and also
we decided to use a repartition of 90%/10% for the splits, and that causes the test datasets to
have only dozens of images, especially for Office31/Webcam dataset.

Finally, investigating the performance of these techniques on more modern and complex
architectures, such as Transformers or EfficientNets, is essential to assess their applicability to
contemporary image classification models. Such investigations could reveal novel vulnerabilities
or uncover more effective defense strategies tailored to these advanced architectures.

13/17

VIII] Bibliography
[1] H. Li, S. Guo, P. Tang, C. Hu, and Z. Chen, “TranFuzz: An Ensemble Black-Box Attack

Framework Based on Domain Adaptation and Fuzzing,” vol. 12918, pp. 260–275, 2021,
doi: 10.1007/978-3-030-86890-1_15.

[2] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial
examples,” arXiv preprint arXiv:1412.6572, 2014, doi: 10.48550/arXiv.1412.6572.

[3] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “DeepFool: a simple and accurate
method to fool deep neural networks,” Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, doi: 10.1109/CVPR.2016.282.

[4] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards Deep Learning
Models Resistant to Adversarial Attacks.” [Online]. Available: https://arxiv.org/abs/1706.
06083

[5] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural networks,” 2017
IEEE Symposium on Security and Privacy (SP), 2017, doi: 10.1109/SP.2017.49.

[6] C. Xiao, J.-Y. Zhu, B. Li, W. He, M. Liu, and D. Song, “Spatially Transformed Adversarial
Examples.” [Online]. Available: https://arxiv.org/abs/1801.02612

[7] P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-J. L. Hsieh, “ZOO: Zeroth order
optimization based black-box attacks to deep neural networks without training substitute
models,” Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security,
2017.

[8] J. Su, D. V. Vargas, and K. Sakurai, “One pixel attack for fooling deep neural networks,”
IEEE Transactions on Evolutionary Computation, 2019.

[9] W. Brendel, J. Rauber, and M. Bethge, “Decision-based adversarial attacks: Reliable
attacks against black-box machine learning models,” arXiv preprint arXiv:1712.04248,
2018.

[10] C. Guo, C. Chen, T. Suya, Z. Wang, and W. He, “Simple black-box adversarial attacks,”
arXiv preprint arXiv:1905.00441, 2019.

[11] Y. Zhu et al., “Deep Subdomain Adaptation Network for Image Classification,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 32, no. 4, pp. 1713–1722,
Apr. 2021, doi: 10.1109/tnnls.2020.2988928.

[12] M.-I. Nicolae et al., “Adversarial Robustness Toolbox v1.2.0,” CoRR, 2018, [Online].
Available: https://arxiv.org/pdf/1807.01069

[13] E. Wong, L. Rice, and J. Z. Kolter, “Fast is better than free: Revisiting adversarial train-
ing,” in International Conference on Learning Representations, 2020. [Online]. Available:
https://openreview.net/forum?id=BJx040EFvH

14/17

https://doi.org/10.1007/978-3-030-86890-1_15
https://doi.org/10.48550/arXiv.1412.6572
https://doi.org/10.1109/CVPR.2016.282
https://arxiv.org/abs/1706.06083
https://arxiv.org/abs/1706.06083
https://doi.org/10.1109/SP.2017.49
https://arxiv.org/abs/1801.02612
https://doi.org/10.1109/tnnls.2020.2988928
https://arxiv.org/pdf/1807.01069
https://openreview.net/forum?id=BJx040EFvH

IX] Appendix

Dataset Office31/
Amazon

Office31/
Webcam

OfficeHome/
RealWorld

OfficeHome/
Product

Number of classes 31 31 65 65

Train split (90%) 2524 704 3892 3969

Test split (10%) 293 91 465 470

Total 2817 795 4357 4439

Table 2: Number of images per dataset

Figure 5: Training graph of the target model (DenseNet-121 on Office31/Amazon)

15/17

Figure 6: Training graph of the TranFuzz robust target model (DenseNet-121 on Office31/
Amazon)

Model/Accuracy No attack FGSM PGD C&W ST TranFuzz Attack
Target Model
(non robust) 94.51% 63.74% 6.59% 32.97% 54.95% 42.03%

Madry retrained
(robust model) 97.80% 75.82% 15.38% 47.25% 65.93% 47.83%

TranFuzz retrained
(robust model) 97.80% 71.43% 12.09% 21.98% 67.03% 52.54%

Table 3: Target Model DenseNet-121 on Office31/Webcam target dataset

Model/Accuracy No attack FGSM PGD C&W ST TranFuzz Attack
Target Model
(non robust) 82.25% 70.31% 36.86% 50.17% 55.63% 40.48%

Madry retrained
(robust model) 83.28% 73.72% 39.59% 54.95% 59.39% 41.67%

TranFuzz retrained
(robust model) 87.03% 65.53% 28.33% 37.88% 54.27% 40.48%

Table 4: Target Model DenseNet-121 on Office31/Amazon target dataset

16/17

Model/Accuracy No attack FGSM PGD C&W ST TranFuzz Attack
Target Model
(non robust) 87.45% 67.02% 46.17% 56.17% 55.53% 49.09%

Madry retrained
(robust model) 86.17% 72.98% 49.79% 57.66% 58.09% 44.75%

TranFuzz retrained
(robust model) 91.28% 70.64% 42.34% 49.36% 55.74% 55.25 %

Table 5: Target Model DenseNet-121 on OfficeHome/Product target dataset

Model/Accuracy No attack FGSM PGD C&W ST TranFuzz Attack
Target Model
(non robust) 97.80% 45.05% 14.29% 63.74% 48.35% 25.36%

Madry retrained
(robust model) 93.41% 60.44% 10.99% 59.34% 54.95% 25.00%

TranFuzz retrained
(robust model) 98.90% 47.25% 10.99% 51.65% 46.15% 39.49%

Table 6: Target Model AlexNet on Office31/Webcam target dataset

Model/Accuracy No attack FGSM PGD C&W ST TranFuzz Attack
Target Model
(non robust) 91.21% 53.85% 13.19% 58.24% 59.34% 45.29%

Madry retrained
(robust model) 93.41% 60.44% 8.79% 58.24% 65.93% 43.12%

TranFuzz retrained
(robust model) 97.80% 46.15% 6.59% 52.75% 61.54% 50.72%

Table 7: Target Model VGG-19 on Office31/Webcam target dataset

17/17

	Introduction
	State of the Art
	White-Box Attacks
	Black-Box Attacks
	Defenses Against Adversarial Attacks

	TranFuzz system
	DSAN
	Fuzzer

	Evaluation methodology
	Adversarial retraining

	Experiences and protocols
	Results
	Process
	Transferability results
	Attack results
	Limitations

	Conclusion
	Bibliography
	Appendix

