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Abstract. A lot of research effort has been done to investigate how to
attack black-box neural networks. However, less attention has been paid
to the challenge of data and neural networks all black-box. This paper
fully considers the relationship between the challenges related to data
black-box and model black-box and proposes an effective and efficient
non-target attack framework, namely TranFuzz. On the one hand, Tran-
Fuzz introduces a domain adaptation-based method, which can reduce
data difference between the local (or source) and target domains by
leveraging sub-domain feature mapping. On the other hand, TranFuzz
proposes a fuzzing-based method to generate imperceptible adversarial
examples of high transferability. Experimental results indicate that the
proposed method can achieve an attack success rate of more than 68% in
a real-world CVS attack. Moreover, TranFuzz can also reinforce both the
robustness (up to 3.3%) and precision (up to 5%) of the original neural
network performance by taking advantage of the adversarial re-training.

Keywords: Domain adaptation · AI security · Fuzzing · Black-box
attack

1 Introduction

Recently, Deep Neural Networks (DNNs) have been applied to many realistic
AI systems, such as image classification [1]. However, due to the catastrophic
overfitting or underfitting problem, the DNN-based systems always show a very
vulnerable behavior in many corner cases [2]. In other words, if the DNN models
are not tested in particular corner cases (which is referred to as the adversarial
example, i.e., clean data that adds a well-designed noise), there would be dev-
astating consequences. Thus, like traditional software testing, it is particularly
important to systematically test and check the quality of the DNN-based models.
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There exists plenty of works to test the quality of DNN-based systems by tak-
ing advantage of the model attack method [2,3,20]. These works always belong
to white-box attacks, where the adversary usually first draws upon knowledge of
the structure and parameters of the target model and then injects some imper-
ceptible perturbation into a test example to create an adversarial example, and
attacks the victim model. Nevertheless, in real-world scenarios, the target vic-
tim model is always a black box, where an attacker cannot access a complete
knowledge of the target model. This will increase the attack difficulty. How to
successfully attack the target model under the black-box condition is a very
challenging issue.

To solve the above problem, the researchers have proposed two kinds of adver-
sarial black-box attack methods: i) Query-based attack method [5,15], where the
target black-box model is treated as an optimization problem, and the attackers
use query prediction information (for example, a probability value) as an instruc-
tion to generate adversarial examples. Although the query-based attack method
usually has a high attack success rate, it does take a very high number of requests,
which will incur a higher cost [6]. ii) Transfer-based attack method [4,20], where
the adversary ought to construct a comparable model as the local substitution
to the target, and construct highly transferable adversarial examples that can
successfully attack the local model. Then, these adversarial examples are trans-
ferred to attack the target black-box model. In this paper, we mainly focus on
the transfer-based attack.

Unfortunately, the existing transfer-based attack methods [4,20] usually only
consider that the network architecture of the target model is a black box, but do
not consider the target training data is a black box, and it is assumed that the
training data of the source and target models are following the same data distri-
bution [20]. However, it is not the case for practical application. As a result, these
methods often suffer from low attack success rates or poor transfer efficiency in
the black-box attack task. To remedy the above deficiency, in our black-box
attack problem, we summarize the following two key challenges:

C1: Target Training Data Is Black-Box. Due to commercial confidentiality,
the training data used in the target model will not be publicly available, and only
some of the test/validation data examples may be provided to developers with
some special scenes (e.g., adversarial competition1). This will lead to a different
data distribution between training data used in the local (or source) model and
that used in the target model. How to exploit the limited test/validation data
examples of the target model to achieve a successful attacking purpose is a
critical challenge.

C2: Target Model’s Network Is Black-Box. Developing an effective adver-
sarial example always requires that the attacker has complete information about

1 https://github.com/tensorflow/cleverhans/tree/master/examples/nips17
adversarial competition/dataset.

https://github.com/tensorflow/cleverhans/tree/master/examples/nips17_adv ersarial_competition/dataset
https://github.com/tensorflow/cleverhans/tree/master/examples/nips17_adv ersarial_competition/dataset
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the target model, such an attack method is also known as a white-box attack.
However, the attacker is generally unaware of what kind of neural network archi-
tecture is implemented in the target model. How to successfully tackle the target
model under the C2 is another major challenge.

In this paper, we fully consider and explore the relationship between chal-
lenges C1 and C2. On the one hand, to address the challenge of different data
distributions, we propose a methodology based on domain adaptation to reduce
the difference between the data of the source and target domains by using sub-
domain mapping. Based on this method, we can implement a transfer-based
attack. On the other hand, to counter the challenge of the model’s black-box
(C2), we illustrate an adversarial example (AE) generation framework based
on neuron coverage to measure the logical runtime of the DNN model. Within
our fuzzing framework, we also propose a novel ensemble-based seed mutation
strategy to improve AEs attack transferability. The strategy introduces a small
change in input mutations and to maximizes the expected difference between the
original and the adversarial example. Certainly, there exist some transfer-based
adversarial attack methods [3,20] which are used in iterative gradient attack
methods [20]. But they do not have a guide for exposing incorrect corner case
behaviors. This can result in incorrect DNN behaviors remaining unexplored
after thousands of iterations (low transferability caused by overfitted issues [3]).

In the end, we design a black-box model attack framework, namely, Tran-
Fuzz, which combines the domain adaptation method with the fuzzing strategy.
Evaluation experiments show that the proposed TranFuzz method is best able
to achieve an attack success rate of over 68% in the real-world Cloud Vision
Service (CVS) scenario.

Summary of Contributions – The major contributions to this paper are
shown as follows:

– We propose a black-box attack framework, namely, TranFuzz, which can gen-
erate highly transferable adversarial examples by interconnecting the domain
adaptation-based local alternative model construction method and fuzzing-
based method, respectively. To the best of our knowledge, it is the first work
to combine domain adaptation and fuzz methods against the black-box model.

– TranFuzz2 takes full account of the challenges of the data black-box and the
neural network black-box. To create highly transferable AEs, we propose an
ensemble-based seed mutation strategy, which can rapidly and efficiently trig-
ger objective functions in our fuzzing framework. The experimental results
show that the average attack success rate of TranFuzz can exceed 10%, com-
pared to the state-of-the-art baselines.

– In five real-world Cloud Vision Services (i.e., Aliyun, Baidu, Tencent, Azure,
and Clarifai) attacking scenes, the TranFuzz can better perform over 68%
attack success rate. Furthermore, our proposed method can also enhance the
robustness of the victim’s model with adversarial training.

2 https://github.com/lihaoSDU/ICICS2021.

https://github.com/lihaoSDU/ICICS2021
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Organization – The remainder of this paper is organized as follows. We present
an overview methodology of the TranFuzz framework in Sect. 2. In Sect. 3, we
illustrate details of the evaluation experiments and results. Section 4 highlights
the related work of the paper and we conclude our work in Sect. 5.

2 Methodology

In this section, we first introduce an overview of the TranFuzz (Sect. 2.1), and
then we illustrate the local model construction method based on domain adap-
tation to break the barrier of the data black-box challenge (Sect. 2.2). Finally,
we generate optimal adversarial examples with high transferability by present-
ing a fuzzing-based method to address the neural network black-box challenge
(Sect. 2.3).

2.1 Overview of TranFuzz

TranFuzz takes full account of the unique nature of the data black-box challenge
co-existing with the model black-box challenge in the realistic application scene.
In this paper, we design an effective adversarial example generation framework,
named TranFuzz. The TranFuzz framework is depicted in Fig. 1. In TranFuzz,
we first develop an algorithm based on a deep sub-domain adaptation network
(DSAN) to construct a local substitute model. Afterward, we manufacture an
adversarial example of high transferability on the strength of the mutation-based
fuzzing strategy.

Fig. 1. Framework of TranFuzz.

2.2 Domain Adaptation-Based Local Model Construction

In the data black-box challenge, we assume that the attacker cannot get the
target model’s training data. Only unsupervised validation/test data can be
accessed. To resolve the problem mentioned above and construct a local replace-
ment model, in this section, TranFuzz uses a deep subdomain adaptation network
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(DSAN) algorithm [9] with a certain improvement of the DSAN pseudo-labeling
part. DSAN uses a classification loss function and an adaptive loss function
to close the huge gap between the data of the source and target domain. We
formulate the objective function of the DSAN as:

min
f

1
ns

ns∑

i=1

J(f(xs
i ), y

s
i ) +

∑

l∈L

LMMDl(p, q) (1)

where J(·, ·) is a cross-entropy function, f(·) is the predict function, ns is the
number of a source domain’s samples, and xs and ys corresponding to the source
domain’s samples with the label. LMMD(·, ·) is the local maximum mean dif-
ference function to calculate the loss in the process of subdomain domain adap-
tation. The l is an active layer in the subdomain distribution L. p and q are
the data distributions of the source and target domains. To address the chal-
lenge of the data black box, our optimization goal is to minimize Eq. 1 under the
conditions of different data distributions between p and q.

From Eq. 1, DSAN leverages an algorithm based on domain adaptation net-
works (DANs) [10] and designs a local maximum mean difference as the difference
metric between source and target domains. To compute the LMMD and reduce
the data distribution difference between source and target domains. In our pro-
posed method, we leverage a query-based strategy that adopts the target victim
model as a benchmark to predict the target samples. For each sample, a single
request is necessary for our proposed method. The improved method can sig-
nificantly enhance the generalization capabilities of the local surrogate model’s
construction. Formally, the proposed method is formalized in Eq. 2.

LMMDl(p, q)
�
= Ec||Ep(c) [φ(xs)] − Eq(c) [f

t(xt)]||2 (2)

where E[·] is the mathematical expectation function, c is the different classes
(e.g. labels), xt is the target domain’s example. φ(·) means the feature mapping
function. In this paper, we use a universal function of the Gaussian Kernel as a
mapping function between source and target domains. Our proposed approach
can be applied to any neural network architecture to construct a local model
with a promising performance.

2.3 Fuzzing-Based Adversarial Examples Crafting

In this section, we leverage the coverage-based fuzzing method to fuzz our local
substitution model and generate high transferability adversarial examples. In
the following chapter, we first describe the coverage gauge to guide our fuzzing
neural network framework. Then we also elucidate the fuzzing objective function.
Second, we describe our coverage analysis method (also called coverage analyzer)
of the TranFuzz. Finally, we propose a new comprehensive mutation strategy to
generate highly transferable adversarial examples.

Definitions of the Neuron Coverage and Objective Functions. The fol-
lowing are several definitions that are used in the fuzzing framework.
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Neuron Coverage. TranFuzz exploits neuron coverage (NC) as our fuzzing
coverage criteria, proposed by DeepXplore [2]. Neuron coverage is a metric for
testing the comprehensiveness of the DNN model. NC can also calculate how
many neurons are at least activated once during the current process. The formula
of the neuron coverage is shown below:

NCov(TS, seed) =
|{ni|∀seed ∈ TS, f(ni, seed) > th}|

K
(3)

where TS is a set of test seeds {ts1, ..., tsn}. We suppose all neurons of the
model as N = {n1, ..., nK}, K is the number of neurons in the model, th is
the fuzzing threshold to be considered as an activated neuron (in this paper
we define the value as zero). f(·) is the function that allows you to send back
the output value of the neuron. It is worth mentioning that in our proposed
TranFuzz framework, we did not intentionally pursue a higher neuron coverage
as our optimization objective. We took neuron coverage as a guide instruction
metric to discover more exceptional adversarial examples that can crash the local
substitute model.

Objective Functions. TranFuzz fully considers the high transferability and
human imperceptibility as the objective fuzzing functions to craft adversarial
examples. If an adversarial example complies with the objective function con-
straint, the fuzzing process will jump out of the execution loop.

On the one hand, TranFuzz loosens the differential testing objective function
used in [2] and proposed a novel function, specifically,

objDX : Of1(x) ∪ Of2(x) ∪ ...Ofk(x) = 1, (4)

where f(·) is the predicted function of local models, ∪ is the union function, k
is the number of local models. If fi(x) is not equal to the true label of x, then
Ofi(x) = 1. In addition, the differential testing method requires several local
DNN models with the same prediction task, which will increase training costs.
Unlike the differential testing method above-mentioned, TranFuzz only needs
a local substitution model as our fuzzing framework input (k = 1 in Eq. 4).
Accordingly, one of the fuzzing objective functions obj1TF in TranFuzz describes
as following:

obj1TF : f(xadv) �= true label of xadv (5)

On the other hand, to generate imperceptible adversarial examples, the
structural similarity between adversarial examples and the original examples is
another objective function used in the fuzzing framework. We introduce an Aver-
age Structural Similarity (ASS) [11] as the similarity metric. To deduce structural
changes, ASS captures pixel intensity patterns, especially among adjacent pixels.
ASS can also measure the brightness and contrast of the image which affects the
perceived quality of the image. The formalization of the objective function based
on structural similarity is
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obj2TF : ASS(xavd, x) > τ (6)

where τ is the pre-setting threshold value of ASS, we set it as 0.96 in our eval-
uation experiments. In the end, we combine obj1TF and obj2TF as our objective
functions. If these conditions are triggered, the current fuzzing loop will shut
down.

Coverage Analyzer. In the coverage parser section, if the adversarial example
xi
adv has not satisfied the objective functions, the coverage analyzer will ran-

domly select unfuzzed network layer neurons. After that, the coverage analyzer
will split a new fuzzing path. Next, the coverage analyzer will calculate the cur-
rent neuronal loss values and gradient values gradsi. The coverage analyzer will
combine the xi

adv and gradsi as the Mutator inputs. If the xi+1
adv can reach the

objective functions, the coverage analyzer will update the neuron coverage and
break the current fuzzing loop.

Mutator. Mutator is the schedule against too many fuzzing execution itera-
tions. The mutator can also craft adversarial examples of high transferability
and imperceptibility. In this section, TranFuzz proposes a novel ensemble-based
mutation method that leverages multiple perturbation strategies to generate
adversarial examples. The formal representation is xadv = x + δ, where δ is the
optimal adversarial perturbation.

The mutator is based on the gradient value which is computed by the local
surrogate model output layer and the hidden layer. To generate adversarial per-
turbation δdx, we adopt the occlusion strategy described by DeepXplore to sim-
ulate the camera lens that may be accidentally or deliberately occluded. In con-
trast to DeepXplore’s strategy, we are implementing a smaller occlusion adver-
sarial perturbation δDX = occlusioni:i+m,j:j+n (smaller rectangle that has m∗n
pixels, and (i, j) is the coordinate of a pixel) and operating randomly in multiple
seed positions.

Moreover, to improve the success of the attack under the premise of imper-
ceptibility, TranFuzz does not implement general mutation methods with var-
ious fuzzers, e.g., image blurring, image contrast adjusting, image brightness
adjusting [13]. The TranFuzz proposed a novel method based on the scale of
images [12] to transform adversarial perturbations. The mutator first leverages
the cumulative distribution function (CDF) to calculate the equalization of the
image perturbation histogram. The formalization of the histogram equalization
function (T (·)) is as follows:

T (rk) =
G − 1
MN

k∑

j=0

nj , k = 0, 1, ..., G − 1 (7)

where MN is the sum of pixels, rk is the gray level of the image,
∑k

j=0 nj is the
number of rk, and G is the number of possible gray levels of the image.
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After equalizing the histogram, we adopt the linear interpolation method to
insert the initial Gaussian derived noise from the gradient. Then we calculated
the adversarial perturbation δTF . To avoid invalid values in δTF , the mutator
also quantifies the adversarial perturbations [14]. Finally, we describe the optimal
adversarial perturbation as δ = δDX + δTF .

3 Evaluation

In this section, we first introduce specific details of the data sets adopted in
our evaluation experiments, then the attack configurations are also depicted in
this section (Sect. 3.1). After that, we attack both the non-robustness (Sect. 3.2)
and robustness (Sect. 3.3) of the black-box models that leverage the adversarial
examples generated by TranFuzz. We also compare our method with eight state-
of-the-art baseline methods. In addition, five different business Cloud Vision ser-
vices are conducted as black-box victim targets in real-world scenarios (Sect. 3.4).
We also analyze the positive impacts of the proposed method on the target model
defensibility by leveraging adversarial retraining (Sect. 3.5).

3.1 Experimental Setting

Datasets. To build black-box data with experimental domain adaptation envi-
ronments, we use two different image data sets (namely, Office-31 [16] and Office-
Home [19]), which are often the benchmark dataset in the domain adaptation
field. In our evaluation experimental setting, to simulate the C1 challenge, differ-
ent categories are regarded as the source and target domains (specifically, Ama-
zon and Webcam of the Office-31, Product and RealWorld of the Office-Home),
respectively. All domain adaptation data are downloaded from the open-source
site3.

Attack Configurations. The settings for black-box model attacks and evalu-
ation baselines are described in this section.

Black-Box Model Setting. ResNet50, AlexNet, VGG19, and DenseNet121
are different models of neuronal network structures. We conducted the above-
mentioned models in our black-box attack evaluation experiments. Moreover, to
build the experimental configuration about the model black-box under the C2
challenge, we use the ResNet50 neural network as the source domain model. The
other three models are as the target domain attacked model. For example, under
the C2 challenge, on the one hand, the source domain model with its training
data is the ResNet50 and Webcam. On the other hand, the target domain model
with its training data is defined as DenseNet121 and Amazon. While the two
different models all have 31 different classes (backpack, bike, etc.), the training
data of the models are different and obeys the C1 challenge.
3 https://github.com/jindongwang/transferlearning/tree/master/data.

https://github.com/jindongwang/transferlearning/tree/master/data
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Baselines. 1) In the non-robustness black-box model attack, we leverage eight
different state-of-the-art attack methods as the baselines in our comparison
experiments. Specifically, five white-box attack methods (namely, DDN [14],
PGD [4], FGSM [20], L-BFGS [17], C&W [18]), and three black-box attack meth-
ods (ZOO [15], Pixel Attack (PA) [21], and Spatial Transformation (ST) [22]). 2)
In the robustness black-box model attack task, we use adversarial training algo-
rithms to build robust models as the victim models. The compared baselines
are the same as the above-mentioned in step 1). The details of the adversar-
ial training algorithms are Fast is Better than Free (FBF) [25] and Madry’s
Protocol [4]. 3) To demonstrate the effectiveness of our proposed approach in
real-world black-box attack scenarios, we are also attacking five state-of-the-art
commercial Cloud Vision Services (CVS), namely, Aliyun4, Baidu5, Tencent6,
Azure7, and Clarifai8.

Implementation Details. 1) In our evaluation experiments, all the training
iterations numbers are set as 200. 2) Also, implementation information of the
eight baseline methods are depicted in the AdverTorch [23] and ART [24]. It is
worth noting that the Spatial Transformation parameters of max translation
and max rotation are all equal to 30 degrees (which is consistent with the [22]).
Other employment parameters are all set to default. 3) In the implementation of
adversarial training, we conduct the ART tool to re-train the robustness models
(AdversarialTrainerFBF and AdversarialTrainerMadryPGD). The maximum
number of training iterations also is set to 200. The maximum perturbation
parameter with its step is set to 0.3 and 0.1, respectively. 4) Considering the
cost of the commercial Cloud Vision Services (e.g., one thousand API access
will need to be 3$ for Aliyun), we randomly select 50 adversarial examples to
attack the five CVS which are generated by TranFuzz. The detailed description
is shown in Sect. 3.4. Among the five CVS, we access the provided API of Aliyun,
Baidu, and Clarifai. In addition, the Tencent and Azure attacks are making use
of web browsers upload manually. 5) We randomly divided the target domain
data into the train (80%) and test (20%) parts. The train part is for training
the target victim model and the test part is for constructing the source local
substitute model. 6) In the experimental evaluation, we perform Attack Success
Rate9 to evaluate our proposed framework.

We provide a summary of our trained DNN-based models of the target
domain in Table 1.

4 https://vision.aliyun.com/imagerecog.
5 https://ai.baidu.com/tech/imagerecognition/general.
6 https://ai.qq.com/product/visionimgidy.shtml.
7 https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision.
8 https://www.clarifai.com/label.
9 The Attack Success Rate is the proportion of adversarial examples misclassified by

the target DDN [14].

https://vision.aliyun.com/imagerecog
https://ai.baidu.com/tech/imagerecognition/general
https://ai.qq.com/product/visionimgidy.shtml
https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision
https://www.clarifai.com/label
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Table 1. Summary of the target DNN-based models

Target model type Dataset Index Architecture Train & test

data

Testing

accuracy

Training

iterations

Non-robust Office-31 1 AlexNet Amazon 77.53% 200

2 AlexNet Webcam 95.91% 200

3 VGG19 Amazon 83.62% 200

4 VGG19 Webcam 91.81% 200

5 DenseNet121 Amazon 79.97% 200

6 DenseNet121 Webcam 93.57% 200

Non-robust Office-Home 7 AlexNet Product 80.22% 200

8 AlexNet RealWorld 69.6% 200

9 VGG19 Product 85.68% 200

10 VGG19 RealWorld 80.4% 200

11 DenseNet121 Product 85.68% 200

12 DenseNet121 RealWorld 82.85% 200

Robust (FBF) Office-31 13 DenseNet121 Amazon 62.89% 200

14 DenseNet121 Webcam 83.04% 200

Robust (Madry’s Protocol) Office-31 15 DenseNet121 Amazon 52.88% 200

16 DenseNet121 Webcam 76.02% 200

3.2 Black-Box Attack Against Non-robustness Model

This section primarily describes our proposed method to attack the non-
robustness black-box model’s performance. Two different image datasets (Office-
31 and Office-Home) were implemented in the experiments, mentioned in
Sect. 3.1. Details of the comparison experimental results are given in Table 2
and Table 3.

On the one hand, we use ResNet50 as the source neural network to train
a local substitute model for attacking other three different networks. Training
data of the local substitute model differs from the target model on the promise
of C1 challenge. From Table 2, TranFuzz can better achieve more than 33.9%
and 37.5% attack success rates on Webcam and Amazon data, respectively. On
average, TranFuzz can perform a Top-1 attack success rate (specifically, 25.6%)
compared to the other baseline methods. On the other hand, from Table 3, com-
parison experiments also use ResNet50 as the source neural network. The Tran-
Fuzz can mislead the target victim model over 31.3% and 46.9% on RealWorld
and Product data, respectively. For the average attack success rate, TranFuzz
is also capable of making the Top-1 success rate (28.5%) compared to other
baseline methods.

From Table 2 and 3, we observe that AlexNet is not robust against the
nine different black-box attack methods, compared with the DenseNet121 and
VGG19. This demonstrates that the defender should design a more robust and
complex network structure to enhance the DNN-based model’s performance. Fur-
thermore, the C&W attack is one of the most effective and widely used among
the primary attacks. From the evaluation experiments of non-robustness black-
box attack, our proposed method can surpass the C&W method over 2.38% and
6.4% in Office-31 and Office-Home datasets. In addition, the L-BFGS attack
uses L-BFGS to minimize the distance of the original and perturbed images.



270 H. Li et al.

Table 2. The success rate of attacks against the non-robustness black-box model in
the Office-31 dataset

Source model Source data Target model Target data Attack

DDN PGD FGSM L-BFGS C& W ZOO PA ST TranFuzz

ResNet50 Amazon AlexNet Webcam 12.9% 19.2% 22.4% 21.64% 25.25% 1.92% 34.1% 33.9% 33.9%

VGG19 9.9% 14.6% 17.4% 15.35% 20.05% 2.44% 17.9% 26.9% 19.3%

DenseNet121 16.9% 25.6% 18.8% 22.22% 27.49% 1.22% 11.9% 11.7% 18.1%

Webcam AlexNet Amazon 10.6% 19.9% 23.4% 10.28% 20.04% 2.93% 22.3% 35% 37.5%

VGG19 10.6% 11.7% 12.9% 10.62% 20.9% 1.18% 11.9% 23.7% 20.7%

DenseNet121 11.1% 19.3% 18.1% 14.12% 25.61% 2.34% 8.4% 16.2% 24.2%

Average attack success rate 12.0% 18.4% 18.8% 15.71% 23.22% 2.01% 17.8% 24.5% 25.6%

Table 3. The success rate of attacks against the non-robustness black-box model in
the Office-Home dataset (DN121: DenseNet121)

Source model Source data Target model Target data Attack

DDN PGD FGSM L-BFGS C& W ZOO PA ST TranFuzz

ResNet50 Product Alexnet RealWorld 13.0% 18.0% 11.8% 17.93% 21.49% 2.1% 21.5% 30.7% 31.3%

VGG19 14.5% 22.3% 19.6% 13.92% 20.71% 2.8% 16.4% 29.9% 24.8%

DN121 13.4% 26.9% 19.9% 13.25% 21.27% 1.9% 11.0% 21.7% 20.7%

RealWorld AlexNet Product 13.5% 23.1% 24.8% 16.29% 23.72% 2.1% 15.0% 36.7% 46.9%

VGG19 14.9% 18.5% 19.2% 14.1% 24.15% 1.9% 10.0% 23.5% 22.5%

DN121 12.1% 30.4% 20.9% 10.27% 21.23% 0.1% 8.1% 20.9% 25.1%

Average attack success rate 13.6% 23.2% 19.4% 14.29% 22.1% 1.8% 13.7% 27.2% 28.5%

The TranFuzz method also can be better than L-BFGS under the premise of C1
and C2 (specifically, 9.9% in Office-31, 14.2% in Office-Home).

Besides, from the results of the experiment, we also observe that the Spatial
Transformation (ST) method has a promising effect on the local black-box model
attack under C1 and C2 challenges, but is still weaker than TranFuzz (4.2% lower
than us). From the adversarial examples generated by ST, we conclude that the
ST method is not similar to the original natural structure of the images. Hence,
from the ST [22] evaluation result, the adversarial example will have a partial loss
compared to the original due to image rotations. Consequently, the target black-
box model cannot predict the successful adversarial examples which trade by
spatial transformation. While the adversarial examples generated by TranFuzz
can retain the original ASS leverages our proposed image mutating strategy
(examples of the AE can be found on our website mentioned before).

3.3 Black-Box Attack Against Robustness Model

In our evaluation experiments, to achieve the proposed robust networks as a
black-box victim model, we implement commonly adversarial training meth-
ods, specifically, Fast Is Better Than Free (FBF) [25] and Madry’s Protocol [4].
Furthermore, the neural network structure of the target model is also set as
DenseNet121, and the source model is ResNet50. The data set that we have
implemented in this section is the same as in Table 2. Detailed information on
the deployment and implementation of robust models can be found in Sect. 3.1,
Table 1.
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Table 4. The success rate of attacks against the robust black-box model

Adversarial trainer Source data Target data Attack

DDN PGD FGSM L-BFGS C& W ZOO PA ST TranFuzz

FBF [25] Amazon Webcam 38.0% 9.9% 11.7% 9.64% 15.32% 11.7% 48.3% 56.7% 74.8%

Webcam Amazon 6.4% 3.0% 1.9% 7.33% 18.58% 0.5% 24.8% 51.0% 53.8%

Madry’s Protocol [4] Amazon Webcam 5.3% 1.2% 1.8% 19.89% 22.81% 1.2% 31.7% 64.3% 53.8%

Webcam Amazon 4.9% 4.0% 3.0% 4.18% 8.88% 2.1% 6.8% 9.9% 13.6%

Average attack success rate 18.1% 8.9% 9.1% 10.26% 16.4% 8.6% 29.4% 44.4% 48.6%

Table 4 shows the black-box attacks result against two distinct robustness
models between TranFuzz and the other eight baseline methods. According to
the table, TranFuzz can achieve a maximum attack success rate of 74.85%, and
the proposed method also is able to accomplish an average attack success rate
of 48.6%. From the evaluated experiment results, we can conclude that our pro-
posed method is optimal compared with others. Additionally, we also observe
that Madry’s and FBF’s defense methods are effective in resisting gradient
attacks (i.e., FGSM-based attacks like PGD, L-BFGS, and FGSM). Specifically,
in PGD, FGSM, and L-BFGS, the worst one only reaches 1.2% attack success
rate, and the average attack success rate only achieves 8.9%, 9.1%, and 10.26%,
respectively. The attack success rate has dropped by more than half compared
to Table 2, Sect. 3.2. Besides, the C&W method can achieve a success rate of
16.4%, which is also lower than the proposed TranFuzz method. Nevertheless,
Madry’s protocol and FBF defense methods are unable to effectively defend
Spatial Transformation and TranFuzz methods. The reason is that TranFuzz
performs an ensemble-based AEs generation method to enhance transferabil-
ity. But the Spatial Transformation algorithm adopts the technique of image
transformation in space that will decrease the imperceptible performance of the
image. In addition, the TranFuzz method can also exceed the ST method on a
mean attack success rate of 4.2%.

Accordingly, based on the above-mentioned investigation, we have put for-
ward some hypotheses and conjectures for the defense strategy here. The
defender should consider various algorithms to generate adversarial examples
(e.g., gradient-based, space-based, and color-based changes strategy) under the
process of building an adversarial trainer. In our evaluation experiments, we also
use adversarial examples generated by TranFuzz as the robust retraining data to
defend against other attack methods. The implementation details are illustrated
in Sect. 3.5.

3.4 Black-Box Attack Against Cloud Vision Services

In this section, we focus on the black-box attack in real-world scenarios. The
attacking targets are five different businesses Cloud Vision Services (Aliyun,
Baidu, Tencent, Azure, and Clarifai). Considering the cost issue mentioned in
Sect. 3.1, we randomly select 50 images from the Office-Home data set and
develop adversarial examples using our proposed approach. It should be noted
that we define a new attack success metric: if the Top-1 prediction tag (which
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access from Cloud Vision Services response) is different between the adversarial
example and the original natural one, we consider the attack as successful.

On the one hand, we call the API provided by Aliyun, Baidu, and Clarifai
and return the detection result. After that, the experimental results of the attack
success rate are being calculated. On the other hand, we also take advantage of
a method that manually uploads the picture via the web browser (Tencent and
Azure), and we also record the response detection results on each of the adver-
sarial examples. Ultimately, the success rate for the attack on Aliyun, Baidu,
Tencent, Azure, and Clarifai is 19/50, 18/50, 34/50, 13/50, and 8/50 respec-
tively. From the CVS detection results, our proposed method can perform a 68%
higher attack success rate on Tencent, and can also do 16% to attack Clarifai
even though it is the worst.

3.5 Adversarial Defending

In this section, we demonstrate that TranFuzz can also enhance the robustness
of the target model. To meet this objective, we are focusing on an adversarial
training strategy based on additional data. We retrain the victim model from
scratch on the union of the TranFuzz crafted adversarial examples with the
original natural images. In this section, to retrain the target neural network,
we implement the Office-Home dataset and DenseNet121 shown in Table 3. The
maximum number of training iterations is also set to 200.

(a) Defended model in RealWorld ’s
data detection.

(b) Defended model in Product ’s
data detection.

Fig. 2. Comparison with success attack rate before and after TranFuzz defend in seven
different attack methods.

In the evaluation experiments, we defend against other Top-7 different attack-
ing methods (DDN, PGD, FGSM, L-BFGS, C&W, PA, and ST). The source
model also is the ResNet50 and the defense results are illustrated in Fig. 2.
From Fig. 2(a), our proposed model defending method is implemented on the
DenseNet121 that can hamper more than 3.3% average success rate on the
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non-target attacks, compared with the non-defense original model. Furthermore,
from Fig. 2(b), the retrained model can also improve robustness performance by
around 1% on average in the Product data.

Moreover, our proposed retraining method can also improve the detection
accuracy of the model over the clean data. We perform the defended network to
predict the clean data in RealWorld and Product, respectively. Further investi-
gation shows that our retrained model can achieve classification accuracy over
87.2% and 92.27%, which are improving more than 5% on average compares to
the original model (the classification accuracy of the original model is 82.85%
and 85.68%, as shown in Index 11 and Index 12 of Table 1).

4 Related Work

In this section, we list several related works with TranFuzz, specifically, attack
methods and adversarial defenses, and DNN-based model fuzzing techniques.

4.1 Adversarial Attacks and Defenses

Black-Box Attacks. The transfer-based strategy is an extremely important
black-box attack method, and several types of research [3,4] were proposed based
on the transfer attack method. Su et al. [21] analyzed an attack situation under
extreme conditions and proposed an adversarial perturbation based on differ-
ential evolution to perform a single-pixel attack. The results of the experiment
show that the reported method can modify the output of the model and only
change one pixel of the image. In addition, ZOO [15] is a query-based black
box attack method, and they exploit the non-derivative optimization strategy
and symmetrical injury difference to estimate the Hessian gradient matrix. The
method does not need to obtain the gradient information of the target model.
Engstrom et al. [22] proposed an attack method based on spatial transformation,
which makes it possible to study the vulnerability of neural network classifiers
by carrying out image rotation and translation operations.

Adversarial Training. Adversarial training is a data enhancement strategy
to improve the robustness of the model. Madry et al. [4] proposed a min-max
optimization framework using the projected gradient descent method to gener-
ate conflicting samples as augmentation data. This method first finds several
examples by adopting the PGD and then uses these examples as the adversarial
training data to decrease the training loss. Wong et al. [25] adopt a weaker,
lower-cost adversarial strategy to form a robust model. The method combines
the fast gradient sign and random initialization methods in adversarial training.
The results of the experiment have shown that it has effective performance with
lower cost compared to the PGD-based adversarial training method.
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4.2 DNN Model Fuzzers

DeepXplore [2] is a fuzzing-based method to verify the DNN system. The method
first proposed Neuron Coverage as a coverage metric for guiding the DNN
model’s testing. DeepXplore uses differential testing and generates some test
inputs to identify the incorrect behavior of the deep learning system without the
necessary manual operations. In addition, to effectively mutate test inputs, [13]
proposed eight mutation strategies that include neuronal network weight-based
mutation, neuron-based mutation, and layer-based mutation.

5 Conclusion

In this paper, we fully consider the relationship between the challenges of data
black-box. Based on that, we proposed a non-targeted black-box attack frame-
work. The evaluation experiment results show that our proposed framework
can address both the non-robustness and robustness black-box attack tasks. In
addition, TranFuzz can perform over 68% attack success rate against real-world
Cloud Vision Services. Moreover, by taking advantage of the adversarial training
strategy with data augmentation, TranFuzz can also strengthen the robustness
of the original model.

Acknowledgment. This research was supported by National Natural Science Foun-
dation of China (No. 62002203), Major Scientific and Technological Innovation Projects
of Shandong Province, China (No. 2018CXGC0708, No. 2019JZZY010132), Shan-
dong Provincial Natural Science Foundation (No. ZR2020MF055, No. ZR2020LZH002,
No. ZR2020QF045), The Fundamental Research Funds of Shandong University (No.
2019GN095), The Open Project of Key Laboratory of Network Assessment Technology,
Institute of information engineering, Chinese Academy of Sciences (No. KFKT2019-
002).

References

1. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR 2016, pp. 770–778 (2016)

2. Pei, K., Cao, Y., Yang, J., Jana, S.: DeepXplore: automated Whitebox testing of
deep learning systems. In: SOSP 2017, pp. 1–18 (2017)

3. Xie, C., et al.: Improving transferability of adversarial examples with input diver-
sity. In: CVPR 2019, pp. 2730–2739 (2019)

4. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning
models resistant to adversarial attacks. CoRR abs/1706.06083 (2017)

5. Bhagoji, A.N., He, W., Li, B., Song, D.: Exploring the space of black-box attacks
on deep neural networks. In: European Conference on Computer Vision (2019)

6. Suya, F., Chi, J., Evans, D., Tian, Y.: Hybrid batch attacks: finding black-box
adversarial examples with limited queries. In: USENIX Security Symposium 2020,
pp. 1327–1344 (2020)

7. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng.
22(10), 1345–1359 (2010)



TranFuzz 275

8. Wang, M., Deng, W.: Deep visual domain adaptation: a survey. Neurocomputing
312, 135–153 (2018)

9. Zhu, Y., Zhuang, F., Wang, J., et al.: Deep subdomain adaptation network for
image classification. IEEE Trans. Neural Netw. Learn. Syst. 32, 1713–1722 (2020)

10. Long, M., Cao, Y., Wang, J., Jordan, M.I.: Learning transferable features with
deep adaptation networks. In: ICML 2015, pp. 97–105 (2015)

11. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment:
from error visibility to structural similarity. IEEE Trans. Image Process. 13(4),
600–612 (2004)

12. Xiao, Q., Chen, Y., Shen, C., Chen, Y., Li, K.: Seeing is not believing: camouflage
attacks on image scaling algorithms. In: USENIX Security Symposium 2019, pp.
443–460 (2019)

13. Hu, Q., Ma, L., Xie, X., Yu, B., Liu, Y., Zhao, J.: DeepMutation++: a mutation
testing framework for deep learning systems. In: ASE 2019, pp. 1158–1161 (2019)

14. Rony, J., Hafemann, L.G., Oliveira, L.S., Ayed, I.B., Sabourin, R., Granger, E.:
Decoupling direction and norm for efficient gradient-based L2 adversarial attacks
and defenses. In: CVPR 2019, pp. 4322–4330 (2019)

15. Chen, P.-Y., Zhang, H., Sharma, Y., Yi, J., Hsieh, C.-J.: ZOO: zeroth order opti-
mization based black-box attacks to deep neural networks without training substi-
tute models. In: AISec@CCS 2017, pp. 15–26 (2017)

16. Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to
new domains. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010.
LNCS, vol. 6314, pp. 213–226. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-15561-1 16

17. Szegedy, C., et al.: Intriguing properties of neural networks. In: ICLR (Poster)
(2014)

18. Carlini, N., Wagner, D.A.: Towards evaluating the robustness of neural networks.
In: IEEE Symposium on Security and Privacy, pp. 39–57 (2017)

19. Venkateswara, H., Eusebio, J., Chakraborty, S., Panchanathan, S.: Deep hash-
ing network for unsupervised domain adaptation. In: CVPR 2017, pp. 5385–5394
(2017)

20. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. In: International Conference on Learning Representations (2015)

21. Jiawei, S., Vargas, D.V., Sakurai, K.: One pixel attack for fooling deep neural
networks. IEEE Trans. Evol. Comput. 23(5), 828–841 (2019)

22. Engstrom, L., Tran, B., Tsipras, D., Schmidt, L., Madry, A.: Exploring the land-
scape of spatial robustness. In: ICML 2019, pp. 1802–1811 (2019)

23. https://github.com/BorealisAI/advertorch
24. https://github.com/Trusted-AI/adversarial-robustness-toolbox
25. Wong, E., Rice, L., Zico Kolter, J.: Fast is better than free: revisiting adversarial

training. In: ICLR 2020 (2020)

https://doi.org/10.1007/978-3-642-15561-1_16
https://doi.org/10.1007/978-3-642-15561-1_16
https://github.com/BorealisAI/advertorch
https://github.com/Trusted-AI/adversarial-robustness-toolbox

	TranFuzz: An Ensemble Black-Box Attack Framework Based on Domain Adaptation and Fuzzing
	1 Introduction
	2 Methodology
	2.1 Overview of TranFuzz
	2.2 Domain Adaptation-Based Local Model Construction
	2.3 Fuzzing-Based Adversarial Examples Crafting

	3 Evaluation
	3.1 Experimental Setting
	3.2 Black-Box Attack Against Non-robustness Model
	3.3 Black-Box Attack Against Robustness Model
	3.4 Black-Box Attack Against Cloud Vision Services
	3.5 Adversarial Defending

	4 Related Work
	4.1 Adversarial Attacks and Defenses
	4.2 DNN Model Fuzzers

	5 Conclusion
	References




